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We consider a method for determining the sound field in a two-dimensional lay- 

er. The method we present combines the usual method of reflected plane waves 
with a summation from graphs. It makes it comparatively easy to take into ac- 

count the complex interference pattern due to the transformation of the various 

waves at the boundaries of the layer and to obtain integral relations for the sound 

potentials. When the layer thickness tends to infinity, the problem reduces toone 

concerning the reflection of sound waves at the interface of two media. We study 

the potentials of normal waves in the case of a harmonic source in a solid. 

1, Pundrmentrl ralrtionr. The field of a cylindrically symmetric point ra- 

diator with its axis perpendicular to the plane of the layer (Fig. 1) can be described by 
the potential 9 of the shear waves, polarized in the plane of incidence, and by the po- 

tential cp of the compression waves, which satisfy corresponding wave equations [l-3]. 
Here the rotating shear stresses applied to the lateral surface of the cylinder are not ta- 
ken into account. These potentials are expanded in terms of plane waves and, alongwith 
a Fourier integral expansion of their temporal parts, and they have the form 

a3 z/2--14) er. 
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j. (k, 6) exp { ik [z sin 6 cos cp f (1.1) 

y sin 6 sin cp -J= (z - z:) cos”6]) sin bd6 dq 

(the analogous expression for 9 contains the function go (/&) instead of the function 
f0 (/&) and the z-projection of the wave vector x cos 7 instead of k cos 6 in the second 

term of the exponent). Here c is the speed of a compression wave in the solid and k 
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and x are, respectively, the wave vectors of longitudinal and shear waves. The angles 

6 and Y are connected by the relation k sin 6 = x sin r. The functions f,, (k, 6) and 
Rn (k, 8) are determined from the conditions of equilibrium on the boundary of the radi- 

ator and the medium [ 1, 41. The plus sign in the exponent is chosen when z - zo > 0 

and the minus sign when z - z. < 0. For definiteness we assume that the first of these 

inequalities is satisfied. 

2. Method of graphical W&VI tummrtfon, In [4] the process of plane 
wave propagation in a solid was represented graphically by the scheme shown in Fig.2. 
In what follows, we propose to associate to each graph of this scheme real analytic ex- 

pressions and to consider these as the sums of all possible plane waves obtained when 

the incident wave undergoes multiple reflections from the boundaries of the layer. In 
fact, by using the ray pattern of the multiple reflection of plane waves in an elastic lay- 
er, we can analyze the propagation of these waves graphically. In this analysis it is ne- 

cessary to associate to each ray of the longitudinal or shear waves a continuous or a dot- 
ted line, respectively, and to regard it as an edge of the graph; points of ray reversal 
then become the boundary points of an edge or the vertices of the graph, being indicated 

by dark circles on the lower boundary and by open circles on the upper boundary. Then 
each configuration of the scheme is a graph. Putting each edge of the graph into corre- 

spondence with the analytical expression for the potential of the corresponding plane wave, 
and making each vertex correspond to the coefficient of reflection of this wave, then, to 
the graph in its entirety there will be associated the analytical expression for the total 

potential of the plane waves in the elastic layer. 
There exist four graphs such that the analytical expressions 

associated with them represent the sum of all the plane waves propagating in the layer, 

with angles of incidence 6 for the longitudinal waves and Y for the shear waves. Here, 
and in what follows, quantities with the subscripts I and t , respectively, will refer to 
longitudinal and transverse waves. 

Cutting an arbitrary graph at a vertex, we obtain three parts, one of which is the inci- 
dent wave written in explicit form, the other two being graphs of the same type as the 

original one. What this means, in fact, is that the graphs thus obtained anew represent 
the sum of all the plane waves if in them we consider as the “incident” wave the first 

reflected wave. A similar operation with the remaining graphs enables us to mutually 
interrelate them and thus to obtain a closed system of equations for them. 

A section of the graph MI,” along the line ac (Fig. 2) yields, to the right, a sum of 
graphs of the type Mllo and lM,r” 

Ml,' = I;, -t vp*izIzlo + Vp*M,,” 

F, = exp [$ (z - z,)] t- I$’ csp [bl (2h - z - zo)] + 

vi9 exp [$ (h - zo) + b, (h -z)] 

v@)* = v$) exp [2b, (h - zo)], II b, = ik cos 6 

V@)* = Vi:’ exp [(b, + b,) (h - zJ], 
It 

b,=ixcosr 

(2.1) 
(2.2) 
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Here T/lL@), Tilt@), Vll(i) and VttciJ are the reflection coefficients of the plane waves ; 
the superscripts i = 1 and 2 refer to waves reflected from the lower and upper bound- 

aries of the layer, respectively [ 1, 33. The terms on the right side of Eq. (2.2) correspond 

to the incident wave and the two reflected waves. 

The graph MU” yields the following equation: 

MliO = V~;)‘Mr,O + V$*Mlso 

V(i)* = Vi:) exp (2brz,), 11 V(l)* = Vg) exp [ (br + br) zO] zt 
The absence of terms analogous to Fl in Eq, (2.1) stipulates that the incident wave is 
nonreal (line with a tilde in Fig. 2) and that the reflected waves have already been taken 
into account in Mp’ and MtzO as incident waves. 

3. Generrl 8OlutiOIl Of the ,)‘,teRl, Applying an analogous procedure to 
the remaining graphs, we obtain a closed system of equations with respect to MI,’ and 
Mfi” (i = 1, 2). It can be written in the matrix form 

(3.1) 

Expressions for lit l ’ * and 

the subscripts 1 add)‘l. 

vt,(i)* are obtained from T/~,@)‘; and Vl,ci)” by interchanging 

Solving this system of linear equations, we obtain 

The values for M,l” and Mfzo are obtained from Mrlc and MlzO by replacing the sub- 
script 1 by t , respectively. 

Each graph contains sums of both longitudinal and shear waves ; these are, however, 

easily separated, since at a point (z, y, z) the waves have wave vectors of corresponding 
type preceding the coordinate in the exponents of the expressions for Fr and Ft . 

The total potential cp (u, k, Z, z,,) for the plane waves of compression (without taking 
into account the denominator A and the dependence on I and y) can be written in 
the form 

in which 
‘P (0, k, z, z4 = 2, 0,) exp ($4 + Y, (z,) exp (-- $2) 

2, (z,J = [f” (7’r + RI) + hnD (St + Qt)l CXP (--Q,,) 

(S lfQl) t 

(3.2) 

(3.3) 
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The expression for the total potential or (@, k, z, zOI for the plane shear waves is ob- 
tained by interchanging the subscripts t and t , and also f0 and .& , in Eqs, (3.2) and 

(3.3). 
The potentials of the complete sound field for longitudinal and shear waves in a solid 

layer have the form m pi :I 2-b 
II 

cp = Rc eikcfdk 
I c 

-TC/H+iOZi 

+ q (6, .k, z, zo) tfp’ (kr sin 6) sin 6 d6 (3.4) 
0 

(there is an analogous expression for pp ). Here HG (I) (kr sin 6) is a I-Iankel function of 

the first kind. 

BY letting the layer thickness h become infinite, we obtain, in the limit, the problem 

concerning the reflection of waves from the interface of two media. If, in addition, we 
assume that the wave vector has a small imaginary part, we can neglect the terms of 

order exp (&it) and exP (b,h) in the resulting expressions. As a result, we obtain 

A= 1, Yr = 0 

2, (2,) = fo 1”“P (-- $2,) i- v,, (0 oxp (brz,) + &Vi;) cxn (b*z,) 

and for the potentialofthe longitudinal waves we obtain the expression given in [ 13. 

4. Normal WIVIIII. We consider ~rt~bations associated with the poles of the 
integrand functions in the expressions (3,4). The poles satisfy the equation A = 0. Let 
6 = 6, be simple solutions of this equation, Then in the case of a harmonic radiation 
mode we have 

cp=ReX 
sin 6,~ (a,, k, .z, ZO) 

(da Id+) Ia+ 
I$’ (kr sin fib.) 

(there is an analogo~ expkssion for % ), 

Taking the relation (3.2) into account, we can represent each normal wave as a sum 

of plane waves running in opposite directions along the z -axis. On the lower boundary 
of the layer the waves of order exp (- blz) and exp (- btz) are incident waves ; those 
of order exp (biz) and exp (b,z) are reflected waves. The situation is just the reverse. 

on the upper boundary of the layer, Using the boundary conditions, we obtain the rela- 

tions for ZI (zof , 2, (~1, Y, (~1 and Yt (Q,, which were given in Cl]. Thus, the results 
obtained by use of the method of this paper agree with the known results for normal waves 
in a solid (see [l]). 
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